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Abstract

Questions of the existence and stability of invariant sets in the problem of the motion of a rigid body with a fixed point in an
axi-symmetric force field with a quadratic potential (with respect to the direction cosines of the axis of symmetry of the field) are
discussed. This problem is isomorphic with the problem of the motion of a free rigid body bounded by a simply connected surface
in an ideal homogeneous incompressible fluid which performs irrotational motion and is at rest at infinity. [Kirchhoff F G.R. Über
die Bewegung eines Rotationskörpers in eine Flüssigkeit, J Reine und angew Math, B. 71, 1870, S.237–S.262; Clebsch A. Über
die Bewegung eines Köipers in eine Flüssigkeit, Math Anmnalen, Bd. 3, 1870, S.238–S.262] In particular, in the second case of
the Clebsch integrability of a problem of the motion of a body in a fluid, this problem is isomorphic with the Tisserand problem
on the motion of a body with a fixed point in the case of a quadratic potential of special form,[Tisserand M.F. Sur le mouvement
des planètes autour du Soleil d’apreès la lol èlectrodynamique de Weber, C.R. Acad. Sci. Paris, 1872. V. 75, P. 760–763] which
corresponds to the satellite approximation of the potential of the forces of Newtonian attraction.
© 2007 Elsevier Ltd. All rights reserved.

1. Formulation of the problem1,3

Consider a rigid body with a fixed point in an axi-symmetric force field with a quadratic potential corresponding to
the second Clebsch case.2 The kinetic energy of the body and the potential have the form

Here, Ai(A1 < A2 < A3) are the principal moments of inertia of the body, �i and �i are the components of the angular
velocity vector and the unit vector of the axis of symmetry of the field in the principal axes of inertia of the body for
the fixed point, �2 is a constant which, without loss of generality, we shall consider to be equal to unity by choosing
the appropriate unit of time, i = 1, 2, 3 and the symbol (123) denotes cyclic permutation of the subscripts 1, 2, and 3.

The equations of motion of the body in Euler–Poisson form

(1.1)
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admit of the four first integrals

(1.2)

(1.3)

(energy, area, geometry and Clebsch; compare with Ref. 4).

2. Invariant sets

According to the modified Routh theorem,5 the critical sets of one of the first integrals (1.2) and (1.3) at fixed levels
of the other first integrals correspond to the invariant sets of systems (1.1). We shall seek the critical sets of the integral
C at fixed levels of the integrals

To do this, we introduce the function

where �, � and � are Lagrange undetermined multipliers and we write the condition for its stationary state as

(2.1)

(2.2)

Equations (1.2), which are the conditions for the stationary state of the function W with respect to the undetermined
multipliers, has to be added to Eqs. (2.1) and (2.2).

Assuming that � �= 0, A1, A2 or A3, we find the values of �i from Eq. (2.1) and, substituting them into Eq. (2.2)
assuming that �i �= 0 (i = 1, 2, 3), we conclude that

where it follows that

(2.3)

Hence, if

(2.4)

(we recall that A1 < A2 < A3), then, for fixed levels of integrals (1.2), the integral (1.3) takes a steady value in the
two-dimensional sets of the form

(2.5)

where �i = �(Ai − �)−1 and � = �(�) is defined by relation (2.3). It is obvious that, if � < 0 or � > A3, then all the �i

have the same sign (which corresponds to the sign of � or its opposite respectively), but, if � ∈ (A1, A2), then �2 and
�3 have the same sign which is identical to the sign of �, and �1 has the opposite sign. Without loss of generality, we
will now assume that � > 0 (the case when � < 0 is obtained from the preceding case by replacing k by −k).

In the general case, the two-dimensional sets (2.5) are parametrized by the quantity � which, of course, depends on
the constants h and k of the energy and area integrals. Actually, substituting relations (2.5) into the expressions for the
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first two integrals of (2.5) and taking account of the third integral, we obtain

(2.6)

Expressing �2
1 and �2

2 from the last two relations of (2.6) in terms of �2
3 and k and substituting the result into the

first equality of (2.6), we can show that the coefficient of �2
3 identically vanishes. At the same time, the first relation of

(2.6) takes the form

(2.7)

Hence, the invariant sets (2.5) form two-parameter families (condition (2.4) must not be omitted here).

3. Dynamics of a body on invariant sets

Substituting expressions (2.5) into the last system of equations (1.1), we obtain

(3.1)

(the first system of equations (1.1) is satisfied identically in this case).
It is obvious that Eq. (3.1) are isomorphic with the equations of motion of the Euler top and admit of the two integrals

(3.2)

(3.3)

(the value of the constant l is easily obtained by eliminating the variables �2
1 and �2

2 from the expression for L using
the first two relations of (2.6) and taking account of relation (2.3) and (2.7)). Note that, in the analysis of Eq. (3.1),
instead of the integral (3.3), it is more convenient to use the integral

(3.4)

which is obtained from the integrals (3.2) and (3.3) (K0 = �� + �L); its constant is identical to the constant k of the
initial area integral. However, integral (3.4) depends, of course, on the constant h of the initial energy integral, since
the constants �i which depend on �, that is, on k and h, occur on the left-hand side of relation (3.4).

Hence the motion of a body on the invariant sets is described by the elliptic functions of time

where �0
i (t)(i = 1, 2, 3) is the general solution of system (3.1). We note that, unlike in the classical Euler-Poinsot

problem, for which the surfaces of the levels of its integrals are always ellipsoids, this only holds in problem (3.1)
when � < 0 or � > A3; when � ∈ (A1, A2), the surfaces for a level of the integral (3.4) when k �= 0 are two-sheeted (when
k� < 0) or one-sheeted (when k� > 0) hyperboloids and, when k = 0, they are a cone.

Nevertheless, the combined levels of the first integrals (3.2) and (3.4) define (when account is taken of relations
(2.5)) the one-dimensional invariant sets of system (1.1) for any admissible values of the constants h and k; when
2h = Ai + k2/Ai (i = 1, 2, 3), they degenerate into zero-dimensional sets which correspond to the permanent rotations of
the body around the principal axes of inertia.
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4. The stability of the invariant sets

We will now calculate the second variation of the function W

(4.1)

According to the modified Routh theorem, the invariant sets (2.5) and (3.4) are stable if the quadratic form (4.1) is
sign-definite in the linear manifold �H = �K = �� = 0, which is defined by the relations

(4.2)

Expressing �0
1(t)��1 and �0

2(t)��2 from the last two relations of (4.2) in terms of �0
3(t)��3 and ��1, ��2, ��3 and

substituting the resulting expressions into the first relation of (4.2), we find a relation which solely contains u1, u2, u3:

(4.3)

It is obvious that, if � < 0 or � > A3, then the quadratic form (4.1) is sign-definite for any u1, u2, u3 (in particular,
when u1, u2, u3, which satisfy relation (4.3)). Consequently, the invariant sets (2.5) and (3.4) corresponding to � < 0 or
� > A3 are stable, since the extremal values yield the integral (1.3) at fixed levels of the integral (1.2) (see also Ref. 4).

If � ∈ (A1, A2), the quadratic form (4.1) is not sign-definite for arbitrary u1, u2, u3. We will now show that, depending
on the parameters of the problem, the quadratic form (4.1) either remains not sign-definite (the invariant sets are unstable
in this case5) or becomes sign-definite in the manifold (4.3) (the invariant sets are stable in this case). To do this, we
calculate the determinant

(4.4)

We recall that the functions �0
i (t)(i = 1, 2, 3) satisfy system (3.1) and, consequently, relations (3.2) and (3.4).

Expressing �0
1(t) and �0

2(t) from these latter relations in terms of �0
3(t) and k and substituting the resulting expressions

into equality (4.4), we find that the coefficient of (�0
3(t))

2
vanishes and, as a result of this,

(4.5)

Here, P(�) > P0 > 0 for all � ∈ (A1, A2). In fact, we consider the function Q(1/�) = P(�)/�4. If is obvious that

Consequently, Q(1/�) > Q(1/A2), that is,
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Fig. 1.

Hence (we recall that � > 0, � ∈ (A1, A2)), the determinant (4.5) is greater than zero for all k ≤ 0 and less than zero
for all k ≥ k0, where k0 is the maximum of the function

in the interval � ∈ [A1, A2] and always changes sign in the interval � ∈ (A1, A2) when k ∈ (0, k0).

5. Geometrical interpretation

In the space (h, k, �), the invariant sets (2.5) and (3.4) correspond to a surface � = �(h, k) defined by relation (2.7).
It is obvious that, for any fixed value of k,

Consequently (see expression (4.5)),

Hence, the segments of the surface (2.7) for which � < 0 or � > A3 and, also, those of the segments of this surface
conforming to � ∈ (A1, A2), for which the function �(h, k) decreases as increases h in the case of fixed k, correspond to
stable invariant sets (see Fig. 1). Segments of the surface (2.7) conforming to � ∈ (A1, A2) for which the function �(h,
k) increases as h increases in the case of fixed k, correspond to unstable invariant sets.

In conclusion, we note that, if the integral
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where g = −Δ/(4Ã�4�2) = g(�(h, k)), 	 = P(�)/(4Ã�2), 
 = 	��−1 is introduced instead of the integral K0, then
the stable (unstable) invariant sets conforming to � ∈ (A1, A2) correspond to the case when the surface G = g is a
two-sheeted (one-sheeted) hyperboloid.
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